CHEMISTRY STUDY MATERIALS FOR CLASS 9

(NCERT based Revision of Atoms and molecules) GANESH KUMAR DATE:- 15/07/2020

NUMERICAL PROBLEMS BASED ON MOLE CONCEPT

Question 22. Find the charge of 1 g-ion of N^{3-} in *Coulombs*.

Solution22. Charge on 1 N³⁻ ion = 3 e⁻ = 3 × 1.602×10^{-19} Coulombs

Charge on 1 g-ion of $N^{3-} = 3 \times 1.602 \times 10^{-19} \times 6.022 \times 10^{23}$ Coulombs = 2.894×10⁵ Coulombs.

Question 23. Find the charge of 27 g of Al^{3+} ions in *coulombs*.

Solution23. Atomic mass of AI = 27

No. of moles AI =27/27

= 1 mole

Charge on 1 AI^{3+} ion = 3 e

 $= 3 \times 1.602 \times 10^{-19}$ Coulombs

Charge on 1 mole Al^{3+} ions = 3 × 1.602×10⁻¹⁹ × 6.022×10²³ Coulombs

= **2.894×10⁵** Coulombs.

Question 24. Equal masses of oxygen, hydrogen and methane are taken in a container in identical conditions. Find the ratio of the volumes of the gases.

Solution24. Let X g of each gas is taken. Then,

Mole ratio = O_2 : H_2 : CH_4

= X/32 : X/2 : X/16 = 1:16:2.

= Volume ratio

[: Avogadro's Principle – the molar ratios are also volume ratios for gases] $\therefore O_2 : H_2 : CH_4 = 1 : 16 : 2.$ Question 25. If the components of the air are N_2 , 78%; O_2 , 21%; Ar, 0.9% and CO_2 ,

0.1% by volume, what would be the molecular mass of air?

Solution 25. The molar ratios are also volume ratios for gases (Avogadro's principle)

Molecular mass of air =
$$\frac{(78 \times 28 + 21 \times 32 + 0.9 \times 40 + 0.1 \times 44)}{(78 + 21 + 0.9 + 0.1)}$$

= **28.964**.

Question 26. The atomic masses of two elements (A and B) are 20 and 40 respectively.

x g of A contains y atoms, how many atoms are present in 2x g of B?

Solution26. No. of mole of A = x/20

No. of atoms of $A = (x/20) \times N$ [N is Avogadro constant]

 \therefore y = x × N/20

=> x = 20y/N

Now,

No. of mole of B = 2x/40No. of atoms of $B = (2x/40) \times N$ $= 2N/40 \times 20y/N$ = y.

Question 27. Oxygen is present in a 1-liter flask at a pressure of 7.6×10^{-10} mm of Hg at 0°C. Calculate the number of oxygen molecules in the flask.

Solution 27. Pressure = 7.6×10^{-10} mm Hg = $7.6 \times 10^{-10}/760$ [1 atm = 760 mm Hg] = 10^{-12} atm

> Volume = 1 liter Temperature = $0^{\circ}C = 273 \text{ K}$ We know pV = nRT => n = pV/RT n = $(10^{-12} \times 1)/(0.0821 \times 273)$ = 0.44×10^{-13} No. of molecules = no. of moles × Avogadro constant = $0.44 \times 10^{-13} \times 6.022 \times 10^{23}$ = **2.65 × 10**¹⁰.

Question 28. Calculate approximately the diameter of an atom of mercury, assuming that each atom is occupying a cube of **edge length equal to the diameter** of the mercury atom. The density of mercury is 13.6 g/cc.

Solution28. Suppose the side of cube = x cm = diameter of mercury atom

∴ Volume of 1 Hg atom = x³ and
Mass of 1 Hg atom = density × volume

 $= 13.6 \times x^{3}$

Mass of 1 Hg atom = Atomic mass/ Avogadro constant = $200/6.022 \times 10^{23}$

 $13.6 \times x^{3} = 200/6.022 \times 10^{23}$ => $x^{3} = 200/(13.6 \times 6.022 \times 10^{23}) = 2.44 \times 10^{-23}$ => $x = (2.44 \times 10^{-23})^{1/3} = 2.9 \times 10^{-8} \text{ cm}.$

Question 29.The density of a particular crystal of LiF is 2.65 g/cc. X-ray analysis shows that Li⁺ and F⁻ ions are arranged in a cubic array at a spacing of 2.01 Å. From these data calculate the apparent Avogadro constant.

 $[Li = 6.639u, F = 18.998u (1 Å = 10^{-8} cm)]$

Solution 29. Avogadro constant = No. of LiF molecules present in 1 mole (6.639+18.998=**25.937g**)

Volume of 1 mole LiF arranged in cube= mass/density

= 25.937/2.65 = 9.78 cc.

Length of edge of the cube = $(9.78)^{1/3}$ = 2.138 cm

No. of ions present in one edge of the cube= $2.138/2.01 \times 10^{-8}$ = 1.063×10^{8}

No. of ions (Li⁺ and F⁻) present in the cube= $(1.063 \times 10^8)^3$ = 1.201×10^{24}

No. of LiF molecule per mole= Avogadro constant = $1.201 \times 10^{24}/2$ = 6.01×10^{23} .